Long-Wire Antennas
A Physical Picture of Rhombics and Vs

BY WALTER VAN B. ROBERTS, * W3CHO

HE COMPLETE analysis of the operation of
‘Tlong—wire antennas usually involves rather
complicated mathemadtics, so it is interesting
that some of the main results of such an analysis
can be obtained in a relatively easy and simple
manner which has the incidental advantage of
providing a physical picture of their operation.
The present treatment starts with a simple
long wire terminated nonreflectively so that
" purely traveling waves slide along it. These are
waves of current, but they travel at the same
speed along the wire as do radio waves in space
so that both kinds of waves can be represented
in the same way on a diagram,
Fig. 1 shows a long wire in free space set at an
angle @ with respect to the direction in which
transmission is desired. The diagram is in the
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nature of an instantaneous photograph showing
current waves W along the wire and three sample
radio waves, W1, Ws, and Wg, which have been
radiated from points 1, 2 and 8 on the wire and
are on their way to the desired receiving point.
All the various waves add up at the receiving
location to produce a resultant field, but they
must be added vectorially because they are not
all in the same phase when they arrive. By
drawing a line PQ across the waves it can be
seen, for example, that W is a little out of phase
with W1,
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1 Exactly the same condition determines the best length

of a microwave horn for a given flare angle; also the diameter
of the first Fresnel zone in wave propagation studies.
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‘Fig. 2 shows how to find the vector sum, S,
of the nine waves emitted from the nine points
marked 1 to 9 on the wire, First a vector marked
Wi is laid off to represent wave Wy, then at the
end of W we draw a vector Wg with just enough
change of direction to correspond to the phase
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Fig. 2 — Vector
diagram showin
the addition of fiel S
components from
different sections of
the radiator at a

- point in space.
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difference between W and Wg. This process is
continued until all the waves have been repre-
sented. The sum of all the vectors is the line from
the starting point to the head of the last vector
and is marked 8. (If we had divided the wire
up into a great many points instead of just nine,
Fig. 2 would have looked like part of a smooth
circle.)

It will be seen from Fig, 2 that S would be
slightly greater if we had left off the ninth little
vector. In other words, the wire is too long to
produce the maximum signal possible in the
desired direction. On the other hand, if the wire
had been cut off at, say point 7, the sum S would
again be less than the maximum possible. But it
will also be noticed that the wire can be con-
siderably longer or shorter than the optimum
length without very much reduction in S, which
fact accounts for the wide frequency range of
operation of rhombics, for example.

Fig. 2 shows that the maximum value of S
occurs when the waves from the two ends of the
wire are 180 degrees out of phase, This happens
when the wire is a half-wave longer than its
projection along the line to the receiver! so that

o There are a few simple trig formulas
and vector diagrams here, but don’t let
them frighten you. Essentially, the arti-
cle is an easily-followed exposition of the
principles underlying long-wire anten=-
nas. It will help you to visualize and un-
derstand what goes on, and why, in
rhombics and Vs.
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. A
we have the equation L = 2 + L cos 8 to tell us

the optimum length of wire for a given value of 9.
This equation may be rewritten thus

I A2

" 1-cosf @

We have now developed a formula giving the
best length of wire to use for a given angle 6,
but what is the best value of @ to use? A plausible
argument to determine this is as follows: Let us
suppose that the wire is always divided into the
same large number of parts so that the radiation
from each part is represented by the individual
vectors of a diagram such as Fig. 2. Obviously,
the longer each vector is the greater S will be,
assuming that the total wire length is always
made to satisfly Equation 1. Now the radiation
from each part of the wire in the desired direction
is proportional to the length of the part multiplied
by the sine of 8. Hence the field at the receiver
will depend on L sin 6. Putting in the value of L
given by Equation 1, the field is therefore deter-

in 8
mined by the quantity T——SLI:)W"

It turns out
that this quantity does not have a maximum
value for any value of 6 but continues getting
bigger the smaller 8 is made. Hence all we can
say is that 0 should be made as small as possible
considering that L becomes very large as 0 is
made very small, which fact puts practieal limits
on the reduction of 4.

Ground Reflection

But in all the foregoing we have been talking
about a wire in free space, which is not the usual
condition. Usually the wire is stretched hori-
zontally over ground. If the ground acts as a good
reflector its action is to reinforce the radiation
along a certain elevation angle which depends on
the antenna height. This elevation angle will be
figured later but for the present we will simply
assume that there is such an angle and call it A.
Referring to Fig. 1 again and considering it as a
plan view of the antenna, we will now figure out
all over again what is the best length of wire —
but this time we want to know the best length for
sending signals not directly toward the receiver
but at an angle A above this line. Radiation is
reinforced at this vertical angle in any case so we
might as well design the antenna to work best
in the same direction.

The recalculation happens to be very simple
because Equation 1 tells us the optimum length
in terms of the angle between the wire and the
desired direction of transmission, so all we have
to do is to consider the ¢ in Equation 1 as being
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replaced by the angle between the wire and a line
elevated by the angle A above the direction to the
receiver. By reference to the formulas of spherical
trigonometry it will be found that the cosine of
this new angle is simply the product cos @ cos 4,
where 6 has the same meaning as in the previous
discussion; that is, it is the horizontal angle
between the wire and the direct line to the
receiver. Hence Equation 1 becomes
/2
L = 1Zcos 6 cos A

@

Again we have found how to make the length
optimum for a given value of 8 but do not know
what is the best value of 6. To find out, we apply
the same argument as before and this time find
that the field at the elevation angle A is pro-
portional to

sin @
1-cos @ cosA
This time there is a best value for 6, namely
6 =A. ®

Equations 2 and 3 give definite values to L
and 0 which result in radiating the maximum
possible signal at elevation angle A. All we need
now is to know how high the wire should be so
that reflection from the ground will reinforce
signals transmitted at the elevation angle A.

Each of the individual waves from the wire is
reflected from ground exactly like the waves from
an ordinary dipole, so that the angle of reinforce-
ment of radiation from the long wire will be the
familiar angle that applies to horizontal dipoles.
For the sake of completeness the derivation of
this angle is shown in Fig. 3. The object is to find
the elevation angle at which the direct and

Fig. 3 — Reflection from ground.

reflected rays are in phase. One way to do this is
to know that horizontally-polarized waves are
reversed in phase by reflection and then find
what angle makes the path of the reflected ray a
half-wave longer than that of the direct ray. The
other way is to replace the earth by the image of
the dipole, which is of opposite polarity to the

" dipole, and find what angle makes the path from

the image a half-wave longer than that from the
dipole. Either method gives the result:

A

H=fona @
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This last equation supplies the finishing touch
to the design of a long-wire antenna to give
maximum signal at a given elevation angle. The
equations may be rearranged in various ways by
substituting values from one into another. For
example, if we want to find best values of L, H
and 6 for transmission at a desired elevation
angle A, the equations are more convenient thus:

A
H= 4 sin A ®
_ hN
2 sin? A ®
6 =A (7
7o Recetver
4
1
L L i
1
1
. 4 I
2 wire 4
line |
i
1
i

Fig.5— Combination
of two long wires to form
a half-rhombic antenna.

Fig. 4— The V an-
tenna.

Vs and Rhombics

The wire has been shown slanting off to the
right but it could just as well have been drawn
off to the left except that the direction of the
currents, or rather their crosswise components,
would have appeared reversed as viewed from the
receiving point. Thus if we use both right and
left wires at once and drive them in push-pull
their signals will add and we have a “V” antenna
of optimum design, as shown in Fig. 4. Further-
more, Equations 5, 6 and T also give the optimum
design of a rhombic whose sides are each of
length L with an.angle 20 between sides at the
feed point. That this is so will require a little
more demonstration. ’

In Fig. 5 the wire A is chosen in accordance
with Equations 5, 6 and 7 and hence radiations
from its various parts add up to an exact semi-
circle in the diagram of Fig. 2. Now if wire B
were added to 4 without a change of direction,
the vector diagram of the radiations from the
parts of B would simply continue around the
circle in Fig. 2 to come back to the starting point,
making the resultant S shrink back to nothing.
But actually wire B is reversed in slope with
respect to the line of transmission so that all the
little vectors representing its radiations are re-
versed. Following the procedure for vector ad-
dition this results in the diagram of Fig. 6, which
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has the sum S twice as large as that from the
single wire. If we now add two more wires, ¢ and
D, together with a two-wire line for feed and a
terminating resistor R connecting the far ends of
both sides, the result is the complete rhombic
of Fig. 7.

There is one more thing we can deduce without
much trouble, namely the power gain of the V
and the rhombic as compared to the single wire
of Fig. 1. When we add another wire to form a
V the impedance presented to the source is
doubled since the two wires are in effect fed in
series, so that twice as much power is required
to produce a given current in the two wires as
in one alone. But the field at the receiving point
also is doubled, and doubling the field is equiv-
alent to quadrupling the power. Thus the V
has a power gain of 2 over the single wire. Now
adding elements B and C to the V to form a
rhombic does not change the input impedance
because there is no reflected wave, so the doubling
of the receiver field that is thus produced is
equivalent to quadrupling the power without
any increase in actual input. Thus the rhombic
has a power gain of 4 over the V. These results
might be stated as follows: Each wire added to
the single wire of Fig. 1 gives a power gain of 2.

Power Gain

Caleulating the gain of a rhombic compared
to a half-wave dipole is beyond the scope of the
present qualitative sort of treatment, but an
approximate value can be obtained from the
known input resistance of the rhombie, which,
when properly terminated and designed for maxi-
mum performance, is about 720 ohms. (Not that

Fig. 6 — Vector addi-
tion of field components
from the antenna shown
in Fig. 5.

Fig. 7— The rhombic
antenna.

the last two digits are significant, but 720 is just
ten times the input resistance of a half-wave
dipole, making it a convenient figure to use.) If
then we assume that the impedance of the rhom-
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bic is ten times that of a dipole, it will require
ten times the power input to produce the same
current in the rhombic as in a dipole. But the
current in the rhombie is much more effective
than the same current in a dipole. We can figure
the relative fields set up in the desired direction
by the same current in the two antennas by
figuring their effective lengths, the term “effective
length” being here defined as the length of wire
that would be required to produce the observed
signal at the receiver if the current were uniform
and of the same phase throughout the wire, and
the wire were crosswise to the line to the receiver.
In the case of the half-wave dipole the current is
in the same phase all along the wire but it is not
of uniform strength, so that the effective length

A . .
is - In the long-wire traveling-wave antenna the

current is approximately uniform? but the vary-
ing phase of the waves received from different
parts of the wire makes the resultant (see Fig. 2)
only the diameter of a wecircle instead of the
numerical sum of all the vectors, which is a semi-
circumference. In other words, phase differences

2
reduce the effective length by the factor pc Also,

the long wire is not crosswise to the emitted beam
so its effective length is further reduced by the
factor sin A where 4 is the angle between the
beam and the wire. Thus the effective length

2
is - L sin A. But we can use Equations 5, 6 and 7

to get rid of L, whence effective length is
A sind
= sin?A
In the rhombic the effective length is four times
this value because there are four wires “pulling
together” so that the effective length of the
rhombie is
snd
sin® A
times that of a half-wave dipole and hence the
fields produced by the same current are in that

proportion. The ratio of the powers, being the
square of the ratio of the fields, is

2 The assumption has been made throughout this treat-
ment that the current strength is uniform all along the
wires. Obviously this cannot be true or else the entire
input power would be delivered to the terminating resistor.
However, the assumption appears close enough to the truth
to permit reasoning to conclusions that are sufficiently
accurate for the present purposes.

3 BEquation 19, page 59, Rhombic Antenna Design, by
%. {.‘ Harper, publisked by D. Van Nostrand Co., New

ork.

4 Bruce, Beck and Lowry, “Horizontal Rhombio Anten-
nas,” Proc. I.R.E,, January, 1935,
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sin? 4
sint A

But remembering that it takes ten times as much
power to get the same current into the rhombic
as into the dipole, the actual power gain is

sin%4

1.6 ey The angle A can be eliminated from

this expression since we found previously that

cos A = cos @ cos A and by Equations 5, 6 and 7,
this gives us

cos A = cos?A or sin?4 = 1 — cos*A
= (1 — cos?A) (1 4 cos?A) = sin?A (2 — sin?A).

Thus, finally, the power gain is

3.2
sin%A 1.6

To see how this checks up assume A = 1414°,
which makes sin A = }4{. Then the gain is (3.2
x 16) — 1.6 or about 50, which is about 17 db. This
value checks very closely with the value given
by A. E. Harper of the Bell Telephone Lab-
oratories.?

The present discussion is not intended to be
used as the basis for the design of actual antennas
or even for the caleulation of their performance,
because it only treats the case of the design for
maximum possible output. In practice the dimen-
sions can be economized considerably with very
little loss in performance. For instance, in a
detailed treatment of the rhombic? it is shown
that there are even some advantages in reducing
the lengths of the sides to 749, of the value given
by equations 5, 6 and 7, the values of ¢ and H
being unchanged from those given by the equa-
tions. The objective here is to give a physieal
picture of the operation of long wires and the
relationship between different long-wire antennas
so that more detailed treatments may be read
with better understanding. The method em-
ployed may also be extended to determine the
directions of other “lobes” of radiation from the
long wire.

One final note: if the equations of this article
are compared with equations in other treatments
of rhombies a certain confusion may arise with
respect to the angle 8. Other treatments usually
deal with an angle which they call the ‘“‘tilt
angle” and which is 90 degrees minus 8. Of
course it makes no difference which angle is used
so long as we know what we are talking about,
but the angle ¢ seemed the more natural one to
use in the present derivations.
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